WANG Ziqiang, YUAN Huan, SUN Yifei, et al. Investigation on photocatalysis and room temperature gas sensing of MoS2-ZnO nanocomposite synthesized by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2226-2237. DOI: 10.13801/j.cnki.fhclxb.20210820.002
Citation: WANG Ziqiang, YUAN Huan, SUN Yifei, et al. Investigation on photocatalysis and room temperature gas sensing of MoS2-ZnO nanocomposite synthesized by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2226-2237. DOI: 10.13801/j.cnki.fhclxb.20210820.002

Investigation on photocatalysis and room temperature gas sensing of MoS2-ZnO nanocomposite synthesized by hydrothermal method

  • To develop a high performance, recyclable, low cost photocatalyst. In this work, MoS2 modified ZnO (MoS2-ZnO) nanocomposites were prepared by a hydrothermal method. The morphology and optical properties of the samples were characterized by XRD, SEM, photoluminescence spectroscopy (PL) and XPS. We find that the prepared MoS2-ZnO samples own a porous structure from SEM. And MoS2 can not only enhance the separation efficiency of photocarriers in MoS2-ZnO, but also increase the absorption of visible light region, resulting in improving the photo-catalytic and gas sensitive properties. Under simulated sunlight, the MoS2-ZnO nanocomposite exhibits high photo-catalytic degradation activity for high concentration (15 mg/L) methylene blue dye (MB). At the same time, the MoS2-ZnO-based gas sensor possesses a high sensitivity for NO2 concentration of 2.05 mg/m3. This work offers a simple strategy to prepare highly efficient visible light-driven photocatalysts and gas sensors.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return