一种基于Janus结构水凝胶的制备及其高效湿度发电器件研究

Preparation and study of high-efficiency humidity electricity generation devices based on Janus-structured hydrogel

  • 摘要: 湿度发电(MEG)是一种利用功能性材料将环境湿能转化为电能的新型能源技术,具有全天候、无地域限制等优势,特别适用于分布式传感网络中低功耗节点的应急供能。针对当前湿度发电机功率低、稳定性差等问题,本研究设计并制备了一种基于聚丙烯酰胺(PAM)/还原氧化石墨烯(rGO)/氯化锂(LiCl)的Janus双层复合水凝胶(PGP)。通过冷冻聚合法构建非对称结构以强化离子传输,从而提升能量输出。实验结果表明,湿度发电器件(PMEG)在30℃和80% RH 条件下可实现0.56 V稳定开路电压和0.5 mA/cm2的电流密度,该电流密度是已报道的MEG的十倍以上。此外,PMEG可在环境中持续输出 0.5 V 的连续开路电压长达 500 小时,显示出了良好的环境适应性和性能稳定性。通过器件串并联集成,8个PMEG单元组成的阵列可输出4.2 V电压和3.6 mA电流,可驱动小型电子设备。本研究提出的Janus结构水凝胶设计策略为从环境水分中高效收集能量提供了新的视角和技术途径。

     

    Abstract: Moist-electric generation (MEG) emerges as a new renewable energy technology, capable of harvesting electrical energy through the interaction of composite functional materials and ubiquitous moisture. Furthermore, with the advantages of being geographically unlimited and all-weather operation, MEG demonstrates great potential as an emergency energy source for powering low-power nodes in distributed sensor networks. To address the problems of low power and poor stability of current moisture-electric generators, this study designed a double-layer composite hydrogel (PGP) with Janus structure, based on polyacrylamide (PAM)/reduced graphene oxide (rGO)/lithium chloride (LiCl). The asymmetric structure was constructed by freeze polymerization to strengthen ion transport, enhancing energy output. The experimental results show that the PGP-based MEG (PMEG) can achieve a stable open-circuit voltage of 0.56 V and an ultra-high short-circuit density of 0.5 mA/cm2 under the conditions of 80% RH and 30℃. This current density is more than tenfold the performance of most reported MEG. Furthermore, the PMEG exhibits unparalleled environmental adaptability and stability, maintaining a consistent voltage output of 0.5 V for over 500 hours. Through the series or parallel integration, an array composed of 8 PMEG units can output an open-circuit voltage of 4.2 V and a short-circuit current of up to 3.6 mA, which is sufficient to power small electronic devices. The asymmetric hydrogel design strategy proposed in this research provides new perspective and technological approach for efficiently harnessing moisture energy from the environment.

     

/

返回文章
返回